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We study quantum antiferromagnetism on the highly frustrated planar pyro-
chlore lattice, also known as the square lattice with crossings. The quantum
Heisenberg antiferromagnet on this lattice is of interest as a two-dimensional
analogue of the pyrochlore lattice magnet. By combining several approaches we
conclude that this system is most likely ordered for all values of spin, S, with
a two-fold degenerate valence-bond solid being the ground state for small S.
We show next that the Ising antiferromagnet with a weak four-spin exchange,
equivalent to square ice with the leading quantum dynamics, exhibits analogous
plaquette order. As a byproduct of this analysis we obtain, in the system of
weakly coupled ice planes, a sliding phase with XY symmetry; at intermediate
couplings, long range ‘‘anti-ferroelectric’’ order is stabilized.
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1. INTRODUCTION

On the heels of recent progress in understanding highly frustrated classical
magnets, coupled with a substantial experimental effort, (1) renewed atten-
tion is now focused on the behavior of their quantum counterparts. In
particular, the Heisenberg pyrochlore antiferromagnet is being studied with
view to the question of whether frustration-enhanced quantum fluctuations
might lead to unconventional ordering—or complete absence thereof—
especially for small values of the quantum spin, S. (2–8) This model classically
is special in that frustration prevents any sort of ordering or dynamical



phase transition down to the lowest temperatures, (9–11) for which reason it is
termed a cooperative paramagnet or classical spin liquid.

The challenge of this problem arises from the small energy scale gen-
erated by the frustration: in a semiclassical picture, any linear combination
of the classically degenerate ground states—the collection of which is of
extensive dimensionality (11)—may be selected as the quantum ground state.
For the highly frustrated two-dimensional magnet on the related kagome
lattice, (12) exact diagonalizations of small clusters (13) have provided crucial
benchmarks. This system has turned out to be particularly well suited
to this approach as it appears to have a very short correlation length,
although one does find a large number of low-lying singlet excitations.

For the pyrochlore magnet, it looks as if such results will elude us for
some time to come. The pyrochlore lattice, being three-dimensional, dis-
plays a more inclement scaling of the Hilbert space dimension with linear
system size. Moreover, its unit cell contains four spins and its structure
implies that the smallest system without spurious boundary condition
effects contains at the very least 16 sites.

To evade this, attention has shifted to a system which avoids some of
these complications, namely the planar pyrochlore lattice (Fig. 1). We note
that the planar pyrochlore lattice, up to a mapping, has a prominent place
in the history of exactly solvable two-dimensional models: the ground
states of an Ising antiferromagnet map onto the states of square ice, the
entropy of which was determined by Lieb in 1967. (14) We dedicate this
paper to Elliott Lieb on the occasion of his 70th birthday.

The Heisenberg magnet on the planar pyrochlore lattice is expected to
have similar properties to the pyrochlore as it has the same local struc-
ture—both can be thought of as networks of corner-sharing tetrahedra.
Further, the size and topology of its ground state manifold for Heisenberg
magnets are identical to the pyrochlore case. (11) However, it has a unit cell

Fig. 1. The planar pyrochlore lattice, which can be obtained by projecting the 3-d pyrchlore
lattice onto two dimensions. The spins reside on the underlying square lattice; a tetrahedron
becomes a square with crossings upon projection, all bonds of which have equal strength.
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of only two spins, is two dimensional, and has allowed exact diagonaliza-
tions of a good number of finite size systems of up to 36 spins. Such
diagonalizations have been carried out by Palmer and Chalker (15) and by
Fouet et al. (16) and other workers have also studied this system by several
techniques. (8, 17–20)

In this paper, we take a somewhat broader view of quantum anti-
ferromagnetism on the planar pyrochlore lattice. For the Heisenberg
problem, apart from the small S cases, which we study by a dimer model
analysis and a bosonic Sp(N) theory, we analyze the large S region, both
within Sp(N)—which is also able to treat the intermediate region—and
through the semiclassical 1/S expansion. Overall, we find a strong ordering
tendency. In particular, there is a two-fold degenerate valence bond crystal
for S=1/2 (see Fig. 2). At large S the Sp(N) theory predicts a Néel phase,
whereas the 1/S expansion finds a residual discrete degeneracy. Our pre-
dictions find support in the numerical work of Fouet et al. as we discuss
further below. The nature of the valence bond order is at odds with other
recent work. (8) The S=1/2 kagome magnet (13) behaves very differently
from the planar pyrochlore lattice—and therefore probably the pyrochlore
—ones. Details of the ordering, however, depend on properties of the
planar pyrochlore lattice (most prominently, the explicit breaking of the
symmetry between bonds in a tetrahedron and the existence of nontrivial
closed loops of length four residing on a bipartite lattice) which it does not
share with the pyrochlore lattice; there we expect the order to be much
more delicate.

In addition we consider the Ising antiferromagnet with a weak four
spin exchange dynamics—the Ising ground states are isomorphic to those
of square ice and the dynamics represent the shortest ring exchanges in
this manifold arising from quantum tunneling—hence ‘‘quantum ice.’’ The

Fig. 2. Phases of magnets on the planar pyrochlore lattice discussed in this paper: the
plaquette ( left) and Néel (antiferroelectric) phases. The former describes the Heisenberg
magnet at small S, in which case fat bonds are those with enhanced probability of singlet
formation. It also describes the Ising magnet with weak ring exchange (‘‘quantum ice’’), in
which context the enclosed fat plaquettes are those with a high expectation value of the reso-
nance energy. The latter applies to ferromagnetically stacked Ising planes at intermediate
coupling.
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resulting state displays plaquette order analogous to the Heisenberg magnet
at small S; this ordering agrees with results from exact diagonalizations. (21)

A byproduct of this analysis is the state of a stack of weakly coupled
ice layers, which is seen to be in a ‘‘sliding’’ phase of the kind discussed in
recent work, (22) albeit one that is protected by much simpler arrangements.
At intermediate coupling, this sliding phase terminates in long range ‘‘anti-
ferroelectric’’ order in ice terminology, or Néel order in Ising terminology
(Fig. 2).

We turn now to the details of these assertions and sketches of the
underlying analyses. We treat the Heisenberg problem first, for which the
Hamiltonian is given by

H=J C
OijP

S i ·Sj, (1.1)

where J > 0, the sum runs over all the bonds and the S are spin operators.

2. Sp(N) GENERALIZATION

The Sp(N) technology for frustrated magnets, a reformulation of
Schwinger boson mean field theory (23) controlled by the introduction of
1/N as a small parameter, was introduced and described in detail by Read
and Sachdev. (24) One starts by rewriting the SU(2) ’ Sp(1) spin operators
in terms of bosonic operators, {b‘ , ba}, with the constraint of b†

‘b‘+b†
aba

=2S on each site, and Sz=(b†
‘b‘ −b†

aba)/2, S+=b†
‘ba . The antiferro-

magnetic nearest-neighbor Heisenberg Hamiltonian is rewritten in terms of
the bosonic operators:

H=−J C
OijP

{(Esyb†
isb

†
jy/`2)(Emnbimbjn/`2)−1/4}. (2.1)

One generalizes this expression to Sp(N) by formally introducing N flavors
of bosons, labeled by capital letters, and replacing the antisymmetric tensor
in H by its Sp(N) generalization Jmn

AB=EmndAB. In the limit N Q. at a
fixed boson number per flavor per site, o, one obtains to leading order in
1/N a mean-field theory for spin S=o/2; fluctuations about this give rise
to a gauge theory.

Self-consistent solutions to the mean field theory are obtained by
minimizing with respect to the Hubbard–Stratonovich link fields Qij=
OJmn

ABbA
imb

B
jnP, subject to a constraint on the boson number o. In the process,

one obtains a dispersion relation for the energies w of bosonic spin 1/2
quasiparticles. Within the mean-field theory, there is generically a disor-
dered phase at small o; when one of the bosonic modes goes soft as o is
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increased, condensation of these ‘‘spinons’’ occurs, and long-range spin
order ensues.

Our results at mean-field level are readily summarized. We find zero
expectation value of the diagonal bond variables at all o. On the remaining
bonds, long-range Néel order (Fig. 2) develops above oc=0.393, exactly as
for the simple square lattice. For o < oc, the Néel correlations are only
short-ranged.

Whether or not the spinon excitations in the disordered, small o phase
remain deconfined can only be settled by going beyond mean-field theory.
As on the square lattice, one obtains a compact U(1) gauge theory at
O(1/N), in which instanton tunneling effects lead to the formation of bond
(Peierls) order. (24) An analogous calculation is presented by Chung et al.
for the Shastry–Sutherland model. (25) Details of the ordering pattern, in
particular those due to the inequivalence of the plaquettes with and
without crossings, are perhaps most easily studied through a quantum
dimer model (QDM), which we study for the case of SU(2) spins in the
following section.

3. QUANTUM DIMER MODEL

This approach starts from the assumption that the magnet is in a
regime where the Néel state is destabilized and the effective degrees of
freedom are singlet bonds between neighboring spins, also called valence
bonds, which are represented by dimers. As each spin participates in
exactly one singlet bond, the Hilbert space consists of all hardcore dimer
coverings. An effective dimer Hamiltonian is obtained by means of an
overlap expansion, described in ref. 26. It is formally perturbative in a
small parameter, x, arising from the non-orthogonality of the spin wave-
functions describing the different dimer coverings. When superimposing
two dimer coverings, one obtains a set of closed loops, and each such loop
contributes a factor of xL/2−1 to the overlap, where L is the length of the
loop (i.e., the loop is made up of L/2 dimers of each configuration). For
S=1/2 Heisenberg SU(2) spins, one finds x=1/2.

To zeroth order in x, all of the exponentially numerous dimer cover-
ings are degenerate. With the overlap expansion organized by length, L, of
the resonance loops, the leading order quantum dynamics is a resonance
process on the shortest possible resonance loop. In the case of the planar
pyrochlore lattice, this has length four, and corresponds to flipping a pair
of dimers by 90° (Fig. 3): •

•|
•
•| }

•----•
•----• , yielding the following Hamiltonian (see

Appendix A):

HQDM=−C taT̂a=−C
i

ta(| •
----•
•----•PO

•
•|

•
•| |+h.c.), (3.1)
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Fig. 3. Top: Numbers label the sublattices of the four-sublattice state. Numbers 1 and 2 in
addition label sublattices used in the Monte Carlo simulation, and the arrows denote the
translation vectors of the square lattice with basis making up the planar pyrochlore lattice.
The two inequivalent resonance moves of the QDM are depicted. The one around the crossed
plaquette has zero kinetic energy, tc=0. Bottom: Parametrization of the four-sublattice
ground states on the planar pyrochlore lattice. For the Néel state, h=p (and f is arbitrary):
S1=−S2=S3=−S4. Spins 1 and 4 lie in the plane, spins 2 and 3 do not for f ] 0, p.

where the sum is over all plaquettes, with the kinetic (resonance) energy ta
depending on whether the plaquette, i, is crossed (tc ) or not (tu ). For the
Rokhsar–Kivelson quantum dimer model, one obtains tc=0 and tu > 0
(see Appendix A).

The vanishing of tc arises because the equal amplitude superposition of
two dimer states with the appropriate sign yields a third, degenerate dimer
state of the plaquette. Put otherwise, the resonance move depicted in Fig. 3
induces diagonal triplet correlations which exactly cancel out the gain in
resonance energy for the plaquettes with diagonal antiferromagnetic bonds.
Note that uncrossed loops of length four are absent from the pyrochlore
lattice, where the shortest loop contacting more than one tetrahedron has
length six. The question is what kind of quantum dimer state is selected by
this resonance move.

Extending the results from the square lattice QDM, (26) one therefore
expects the resulting state to be a valence bond crystal; the staggering of t
strongly favors the plaquette crystal, with the dimers resonating on one of
two sublattices of plaquettes without crossings (Fig. 2). This is because a
columnar valence bond crystal would reduce the resonance energy gained
from the uncrossed plaquettes without an offsetting gain from the crossed
ones.
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Note that the degeneracy of this state is two rather than four, as would
be the case for the plaquette state on the square lattice, because of the
explicit symmetry breaking introduced by the presence of the plaquettes
with crossing interactions.

4. SEMICLASSICS

We now consider the case of large spin S and large o for SU(2) and
Sp(N), respectively. To see which state is favored by quantum fluctuations
at leading order in 1/S and 1/N, one compares the zero-point energy,
;o (wo/2 of the bosonic excitations (spin waves and spinons, respectively,
with frequency wo ) of different, classically degenerate ground states. This,
in principle, requires evaluating that energy for the entire ground state
manifold, which is of extensive dimensionality.

For Sp(N), we have compared the bosonic zero-point energies (24) of all
four-sublattice states (see Fig. 4), as well as of eight-sublattice coplanar
states. The four-sublattice states are those states which consist of a single-
tetrahedron ground-state repeated identically on one of the two sublattices
of tetrahedra. These states can be parametrized by two angles h and f, as
depicted in Fig. 3. Similarly, the eight-sublattice states consist of identical
repetitions of eight spins on two tetrahedra. We find that the Néel state
selected at oc is also favored in this limit, which suggests its stability for all
o > oc.

For large S, we have computed the zero-point energy of all four-sub-
lattice states (see Fig. 4). This turns out to be most conveniently done using
the equations of motion for the total magnetizations of the tetrahedra,
which were derived in ref. 11. For a given wavevector, the mode energies
are given by an antisymmetric traceless 3×3 matrix, which implies that all
such states have a zero-energy branch in their excitation spectrum in addi-
tion to the ‘‘standard’’ zero energy branch present for all ground states. (11)

Note that these zero point energies do not diverge despite the presence of
the zero-frequency modes.

We find qualitative agreement with Henley’s suggestion (27) of an effec-
tive energy functional of the biquadratic type, −;OijP (S i ·Sj)2, in that it
correctly reproduces the location of the maximum and the minima. There
remains a degeneracy between some inequivalent collinear states. (27) One of
the remaining degenerate states is indeed the Néel state, but other states,
disfavored at O(1/o), still have exactly the same energy of zero-point
fluctuations at O(1/S). As discussed in a different context, the planar
pyrochlore lattice Heisenberg model at leading order in 1/S does indeed
retain a subextensive degeneracy. (27, 28) The fate of this degeneracy at higher
order in 1/S remains unknown. We note that the large-o treatment of
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Fig. 4. Zero-point energy of four-sublattice states on the planar pyrochlore lattice as a
function of h and f (see Fig. 3): (a) large-S Heisenberg; (b) biquadratic −;OijP (S i ·Sj)2; (c)
large-o for Sp(N). For ease of comparison, the scales of the energy (z-axis) have been chosen
such that the difference of maximal and minimal energy are the same for all three plots. The
energies are invariant under fQ p±f.

Sp(N) differs significantly from both the large-S expressions. We discuss
the detailed origin of this effect elsewhere. (29)

5. IMPLICATIONS FOR THE 3-D PYROCHLORE MAGNET

The actual ordering behavior of the S=1/2 pyrochlore magnet is still
far from settled. At this stage (2–8, 27) it appears to be somewhat closer to that
of the planar pyrochlore lattice than either of the two is to the kagome
case, where there has so far been no strong indication of long-range order
of any kind for S=1/2, and where the large-S state is necessarily non-
collinear. We emphasize, however, that details of the ordering we find, such
as the pattern of the bond solid or the size of the unit cell, crucially depend
on differences between the two lattices—such as spatial dimensionality, the
presence of inequivalent links, and short closed loops linking different
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tetrahedra. Moreover, we remark that most approaches employed so far
for d=3 pyrochlore (2–4, 6–8) explicitly remove the equivalence of all tetra-
hedra by weakening the bonds on half of them; from such a starting point,
it would would seem rather difficult to restore this equivalence perturbati-
vely, which is necessary for obtaining the plaquette ordering we find.

6. FINITE-SIZE DIAGONALIZATIONS

The agreement of the above calculations on a number of central points
is reassuring. Most importantly, they are all consistent with ordered states
with translational symmetry breaking and a two-fold degeneracy. For
small S, they lead us to expect dimer order of the plaquette flavor. How
does this compare to exact diagonalizations of S=1/2 Heisenberg
magnets?

Palmer and Chalker, who have studied systems containing up to 24
spins, find no clearly identifiable degeneracy. Rather, there appears to be a
large number of low-lying singlet states with a small gap and a much larger
gap to triplet excitations. They rule out Néel order but are inconclusive
about translational symmetry breaking. Fouet et al. agree with their results,
but have in addition studied a system with 36 sites. There, they find a par-
ticularly low ground state energy, suggesting that the boundary conditions
for this system size accommodate well the quantum ground state. (30) For
this system, there does appear a two-fold near degeneracy of the ground
state, with the states being described by the wavevectors expected for our
dimer crystal.

7. QUANTUM ICE

We turn next to the Ising problem, whose Hamiltonian is given in
analogy to Eq. (1.1):

H=J C
OijP
s z

i s
z
j ; (7.1)

here, the s are Pauli matrices. This by itself has no dynamics. In the
following, we consider the simplest quantum dynamics in the ground state
manifold. This is a ‘‘ring exchange’’ process in which four antiferromagne-
tically arranged spins around a square without crossings reverse orienta-
tion. In six vertex language this is a reversal of a closed loop of arrows. In
the physical three dimensional ice problem, as a matter of principle, the
degeneracy of the low energy manifold will be lifted by quantum effects
which will involve exactly such processes in which a set of hydrogens move
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coherently. Our two dimensional model mimics such processes, much as
the square ice problem mimics real ice. The issue now is whether such a
dynamics gives rise to ordering.

In the Ising spin representation on the planar pyrochlore lattice the
dynamics is represented by the Hamiltonian, HQ, acting between ground
states of the classical model,

HQ=−C C
p

(s+s−s+s++h.c.) (7.2)

where p denotes a sum over non-crossed plaquettes of the lattice, and s+(−)

are the raising(lowering) operators of the Ising spins sz=±1. To study this
Hamiltonian it is convenient to use an imaginary time discrete representa-
tion of the path integral via the standard Trotter–Suzuki procedure. Here,
this procedure yields a d=2+1 system consisting of a set of ferromagneti-
cally stacked planes of the planar pyrochlore lattice:

HC=Ky C
i, n
s z

i, ns
z
i, n+1, (7.3)

where we have introduced an additional layer index n in the imaginary time
direction and the restriction of the spatial planes to the ground states of
Eq. (7.1) is implicit. The quantum dynamics is captured correctly in the
time continuum limit at large ferromagnetic interlayer coupling, Ky

Q..
For details of this mapping, see ref. 31, where it is discussed in the context
of a study of the quantum dynamics of transverse field Ising models on a
range of frustrated lattices.

We have carried out a Monte Carlo simulation on this stacked model,
with the spin-flip of four spins around a non-crossed plaquette as the basic
Monte Carlo move. We have utilized a cluster algorithm in the imaginary
time direction, and restricted allowed world line configurations to those
consistent with the quantum dynamics, that is to say that going from one
layer to its neighbors, only spins on a single plaquette may be flipped
together, and not larger compounds. In the limit Ky

Q., this restriction is
enforced automatically by the energetics, but for small Ky, two neighboring
planes may differ, e.g., by only six spins on two adjacent plaquettes.

The results of this simulation are depicted in Fig. 5, where we have
plotted the spin–spin correlations for spins on one sublattice along the
coordinate axes as well as the ‘‘flippability’’ correlations, as defined in the
figure caption. We find that the spin correlations rapdily and featurelessly
decay to zero whereas there clearly is long-range order of the flippability at
wavevector (p, p). This state is thus plaquette ordered as depicted in Fig. 2,
where the plaquettes denoted by heavy lines have an enhanced resonance
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Fig. 5. Flippability, f, and spin, s1, correlations from quantum Monte Carlo on
36×36×256 plaquettes. The spin correlations refer to spins on sublattice one in a given
timeslice. Similarly, the f variables measure if a given uncrossed plaquette is flippable or not,
f=±1. The sublattices and directions are defined in Fig. 3.

energy. Such an ordered state has been found from exact diagonalizations,
by Ph. Sindzingre, for the Heisenberg–Ising model on the planar pyro-
chlore lattice close to the Ising limit. (21)

Finally, we note that the quantum dynamics discussed here can per-
turbatively be induced by a ring exchange, a transverse exchange of either
sign, or a transverse field.

8. SLIDING ICE

It turns out to be interesting to study the imaginary time representa-
tion Eq. (7.3) in the weak coupling limit, Ky° 1. While this is no longer
equivalent to the starting quantum Hamiltonian (7.2), it can be interpreted
as the classical statistical mechanics of a set of square ice planes with a
potential interaction between the planes. In this limit the interaction com-
petes with the entropy of the planes and we may ask if the entropy prevails
and leads to a ‘‘sliding phase,’’ such as those introduced recently in studies
of stacked XY systems, (22) in which the individual layers continue to exhibit
algebraic correlations. To answer this we appeal to the height representa-
tion description of the Ising ground state (ice) manifold, which we provide
in the following.

The ground states of the Ising antiferromagnet on the planar pyro-
chlore lattice require two up and two down spins on each tetrahedron
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(square with crossings). The six such possible configurations on each
tetrahedron can be identified with the allowed vertices of the six-vertex
model as follows. (32) Divide the square lattice consisting of the crossings at
the centers of the tetrahedra into sublattices A and B in the usual fashion.
Orient the links coming out of sublattice A(B) inwards if the spin sitting on
that link is up(down) and outwards if the spin in down(up) (Fig. 2). As all
vertices are weighted equally, the ground state manifold has the extensive
entropy, (3/4) ln(4/3) per spin, of square ice. (14)

The ice problem also has a height representation in which an integer
valued height living on the dual lattice steps up(down) by one on crossing
an in(out) arrow clockwise around any vertex. By the standard logic for
such representations, the coarse grained heights are are weighted by the
pseudo-Boltzmann factor: (33)

r[h(x)] 3 e
− > d2x[ p12 (Nh)2+l cos(2ph)]

, (8.1)

where the second term keeps track of the discreteness of the microscopic
heights. With the stiffness exhibited for the ice problem, this term is irrelevant.

In order to compute the spin correlations for the original Ising
variables, we need to identify the most relevant long wavelength operators
that arise in their expansion. As there are two spins per unit cell, two iden-
tifications are needed. Using the labeling for the unit cell and the lattice
axes shown in Fig. 3, we find that the spins are represented by the operators,

s1 ’ (−1)x+y
“xh+

u

2i
(e iph−e−iph)+· · ·

s2 ’−(−1)x+y+1
“yh−

u

2i
(e iph−e−iph)+· · · .

(8.2)

The choice of operators is restricted by the global periodicity of the micro-
scopic height representation under h Q h+2, and the observation that
h Q h+1 and h Q −h interchange the two flat microscopic states, which
are the two Néel states on the square lattice with the crossings removed. As
a consequence, the vertex operator pieces—which are the first subleading
terms—must enter oppositely in the expressions for s1 and s2 but the
remaining sign choice is inconsequential. Our interest in keeping the
subleading terms will become clear in the following.

From the above identifications we can deduce the asymptotics of the
spin correlations. We find algebraic decay with two dominant wavevectors,
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Os1(0) s1(x, y)P ’ (−1)x+y X
y2−x2

(x2+y2)2+
U

(x2+y2)3/2

Os2(0) s2(x, y)P ’ (−1)x+y X
x2−y2

(x2+y2)2+
U

(x2+y2)3/2

Os1(0) s2(x, y)P ’ (−1)x+y X
2xy

(x2+y2)2−
U

(x2+y2)3/2

Os2(0) s1(x, y)P=Os1(0) s2(x, y)P

(8.3)

where X=3/p2 and U=u2/2 with the vertex operators normalized to give
power laws with unit coefficients. The (p, p) component was discussed
extensively in ref. 34, and reflects the local conservation of polarization
in the ice problem. Along the x axis, Os1(0) s1(x, 0)P, can be deduced, (34)

from exact results on one dimensional quantum systems. This proceeds via
the recognition that the Hamiltonian of the Heisenberg–Ising chain

H=−C
n

Sx
nS

x
n+1+Sy

nS
y
n+1+DS

z
n Sz

n+1 (8.4)

commutes with the transfer matrix of the six vertex problem along the y
directions, whence its ground state is also the dominant eigenvector of the
latter. The ice problem corresponds to D=1/2 and the first two pieces of
Eq. (8.3) correspond to the uniform and staggered correlations of the spin
chain. The roles are switched due to the extra staggering in going between
the planar pyrochlore spins and the ice variables. Our full form, guessed
from the height representation, is thus consistent with these known results.
Recent work by Lukyanov on the asymptotics of spin correlations of the
Heisenberg–Ising chain (35) has provided an analytic expression for the
amplitude U. The expression is sufficiently complicated that we will content
ourselves by noting that U=0.01795... .

For uncoupled planes, the probability distribution

r[{hn(x)}] 3 D
n

e− > d2x[ p12 (Nhn)
2], (8.5)

is a fixed point of a two-dimensional renormalization group (RG) trans-
formation in the standard fashion. The coupling between the planes
induces two perturbations in the height language: the first of these,

f1=C
n
F d2x(Nhn) · (Nhn+1), (8.6)
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is exactly marginal under the RG while the second

f2=C
n
F d2x sin[phn] sin[phn+1] (8.7)

is irrelevant as is readily verified. It follows then that the system exhibits a
sliding phase at weak coupling, whence ‘‘sliding ice.’’ One can also check
that the effect of the marginal term is to make f2 less irrelevant, suggesting
that it eventually locks the planes together.

We have carried out Monte Carlo simulations to test this, the results
of which are depicted in Fig. 6. There, we plot the spin–spin correlations
for spins on one sublattice as a function of distance in the x-direction (see
Fig. 3 for the conventions used). For Ky=0, we are in the classical limit
(decoupled planes), and we have checked that our simulations reproduce
the correct power law decay of the spin–spin correlation function there. We
find that this phase remains stable at small ferromagnetic coupling—the
curves for Ky=0 and Ky=0.1 are virtually indistinguishable, thus con-
firming the existence of the sliding phase. (36)

As Ky is increased further, long-range spin order ensues, as evidenced
by the non-zero long-range piece of the spin correlation function at
Ky=0.2. We have checked that the spins on the other sublattice order with
an opposite sign. The heights therefore undergo a locking transition
between Ky=0.1 and Ky=0.2.

0 5 10 15 20
x

0.1

0

0.1

<
σ 1(

x)
σ 1(0

)>

K
τ=0

K
τ=0.1

K
τ=0.2

Fig. 6. Spin correlations on sublattice 1 in the x-direction from Monte Carlo on 48×48×16
plaquettes. The classical curve, Ky=0, and Ky=0.1 coincide. Néel long-range order, albeit
weak, obtains for Ky=0.2.
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For the spins on the planar pyrochlore lattice this is Néel order.
Translated back into ice language, our results indicate that the system
exhibits long range order of the antiferroelectric (or F model) kind (Fig. 2)
at intermediate coupling, in which it maximizes the density of flippable
plaquettes. We are currently investigating the details of the transition from
the antiferroelectric to the plaquette state as Ky is increased.

In height language, both the antiferroelectric and the plaquette
ordered state correspond to a flat phase with heights in adjacent layers
locked. While it is natural to expect that one gets a flat phase, the minimal
information we have used to set up the height analysis does not allow us to
decide analytically which flat state is actually realized. For determining this
‘detail’ of the ordering, the simulations were necessary. Irrespective of this,
locked heights in the limit Ky

Q. imply a gap for quantum ice.

9. SLIDING XY CHAINS

As we have already noted earlier, there is an intimate connection
between the six vertex problem and the XXZ chain. Our above discussion
of the sliding ice phase can be lifted mutatus mutandis into an account of a
sliding phase when a set of XXZ chains are coupled by a weak purely Ising
interaction when 0 < D < 1. As the Ising interactions are strengthened, the
system will undergo a phase transition into a phase with Néel order on the
chains, which is arranged between chains according to the sign of the
interaction. In the equivalent language of spinless fermions, the chains are
dominantly superconducting and the interchain coupling involves the
density alone.

10. SUMMARY

In summary, we have explored quantum frustrated antiferromagne-
tism on the planar pyrochlore lattice. Despite an enormous classical
(S=.) degeneracy, we find a robust ordering tendency for Heisenberg
magnets of any spin, into a valence-bond or a spin solid. For the related
problem of stacked square ice (Ising spins), a sliding phase precedes an
antiferroelectric ordering transition.

Notes Added. While this paper was under revision, Chakravarty (37)

has proposed that the physics of the ‘‘d-density wave’’ state discussed in the
cuprate literature (38) can be captured by bond arrow variables that obey the
ice rule for a single layer. In this case our analysis of quantum ice and
sliding ice has precise correspondences in that problem. Specifically, we
predict a high temperature floating phase and low temperature phase with
staggered orbital currents selected by quantum fluctuations. Moreover, in
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parallel with this work, Starykh et al. proposed the existence of a different
kind of sliding phase on an anisotropic planar pyrochlore lattice, namely
one with isotropic Heisenberg exchange and an exchange strength across
diagonals which is much stronger than that on the bonds of the underlying
square lattice. (39, 40) Further, since this work appeared as a preprint, other
groups have studied the S=1/2 Heisenberg magnet on the planar pyro-
chlore lattice, and found the same bond ordered ground state as us. (41–43)

APPENDIX A. THE QUANTUM DIMER MODEL ON THE PLANAR

PYROCHLORE LATTICE

The basis of the Hilbert space is provided by nearest-neighbor dimer
coverings of the planar pyrochlore lattice, the corresponding wavefunctions
being given by a product wavefunction of spin singlets of the spins on
either end of each dimer. One first has to worry about whether this set of
states is linearly independent. In this case, this turns out to be a problem
as, already for a single tetrahedron, there are three dimer coverings but
only two singlet states. For the planar pyrochlore lattice, this can be
remedied by restricting the allowed dimer coverings to be those of the
underlying square lattice. While this discriminates between horizontal and
diagonal bonds of the planar pyrochlore lattice, this does not break any
lattice symmetries—unlike in the case of the three-dimensional pyrochlore
lattice. For another resolution of this issue, see further down.

The overlap matrix between different dimer coverings, S with matrix
elements Spq=Op | qP, where |pP labels a dimer covering. After adding a
constant Ns

2
3J
4 to the Hamiltonian (Ns being the number of sites), we

compute the Hamiltonian matrix elements Hpq, and find that the diagonal
terms vanish. The full Hamiltonian matrix for an orthogonalized basis set
can be written down as S−1/2HS−1/2, as explained in ref. 26, where S−1/2 is
the matrix square-root inverse of S, obtained by formally carrying out a
Taylor expansion in powers of x. Its leading order term at O(x0) is the unit
matrix. In the absence of diagonal terms, the leading order term in H is of
O(x). This term is off-diagonal in dimer basis and it effects the resonance
move depicted in Eq. (3.1). This is then also the leading order term in
S−1/2HS−1/2.

The corresponding matrix elements, ta, depend on whether the reso-
nance loop is around a crossed (tc ) or an uncrossed (tu ) plaquette. One
finds tc=0 and tu ] 0. The sign of tu is a matter of convention but it is
convenient to choose it to be uniformly positive if possible, as is the case
here.

We conclude the appendix by remarking that one could have reached
the same result by retaining the diagonal dimers and carrying out the same
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formal expansion while disregarding the non-invertibility of S, which
would show up in the failure of the series for S−1/2 to converge at x=1/2.
In that case, the leading order term would still be determined by loops of
length four. Since all the loops containing the diagonal dimers either have
zero kinetic energy or are longer in length (and thus show up at higher
order in x), the resulting quantum dimer model Hamiltonian would be
unchanged from Eq. (3.1).
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